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Preliminary Study of Stable Carbon Isotopes of Bulk Lipid 

Residues in Archaeological Ceramics from West Tinogasta, 

Argentina 

Irene Lantos, Norma Ratto, Héctor Panarello, and Marta Maier 
Foodways of the pre-Hispanic societies of the West Tinogasta region (Catamarca Province, Argentina) were inferred from 
stable carbon isotope analysis on bulk lipid residues from eleven archaeological ceramics recovered from sites with 
occupations ranging from AD 450 - 1550. Nine modern samples were analysed to obtain reference values for typical 
Andean ingredients. Archaeological maize use patterns can be detected by enriched 13C values typical of C4 plant carbon 
compounds found in cooking residues. Our preliminary results show a great variability of maize use and consumption 
practices which can be explained by the multiple recipes and functions a pot had during its use life resulting in organic 
residue ‘palimpsests’. No statistically significant correlation was observed between site chronology and isotopic signals, 
although we propose differential access to maize resource at the Inca site of Batungasta. 

 

Introduction 

Bulk lipid stable carbon isotope analysis is an effective 
method to discover food use patterns from organic 
residues absorbed in archaeological ceramics and it can 
give insight into the cooking practices of West 
Tinogasta’s pre-Hispanic societies (Catamarca province, 
Argentina). Archaeological maize use patterns can be 
detected by enriched 13C values typical of C4 plant carbon 
compounds found in cooking residues (Hart et al., 2009; 
Hastorf and de Niro 1985; Morton and Schwarcz 2004; 
Reber and Evershed 2004; Reber et al., 2004; Seinfeld et 

al., 2009). For this purpose we used an elemental analyser 
coupled to an isotope ratio mass spectrometer to measure 
δ13C values in carbon compounds from the bulk lipids 
extracts of potsherds recovered in sites of the study area 
with occupations extending from AD 450 to 1550. The 
samples were selected from expeditions in the late 1970s 
(Sempé 1976, 1977) and from the continuing research 
projects that began in the 1990s by Dr. Ratto and her team 
in the PAChA Project (Proyecto Arqueológico Chaschuil 
Abaucán). 

Figure 16. Location of sites in the West Tinogasta region, Catamarca province, Argentina. Sites in the Fiambalá 

mesothermal valley: (1) La Troya LTV50, (2) Batungasta, (3) Palo Blanco NH3, (4) Mishma 7 and (5) Punta 

Colorada. Site in the transitional Chaschuil puna: (6) San Francisco. 
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Carbon stable isotope analysis measures the 13C/12C ratio 
expressed in δ13C values. C3 plants and C4 plants have 
different photosynthetic pathways leading to distinct 
isotopic 13C/12C ratios (Deines 1980; O’Leary 1993; 
Panarello and Sánchez 1985; Tykot 2006). C3 plants use 
the Calvin-Benson cycle for CO2 fixation and include 
most South American fruits, vegetables and cool season 
grasses. Their δ 13C values fall into the range -35‰ to -
22‰. On the other hand, C4 plants use the Hatch-Slack 
cycle and are adapted to hot and arid environments. They 
include maize, sugar cane and warm season grasses, and 
their δ 13C values range from -16‰ to -9‰. Maize is 
unique because it is a C4 plant widely cultivated as a staple 

food and it contains more lipids than other edible seeds 
(Reber and Evershed 2004). However, fractionation is 
greater in lipids than in other metabolites such as 
carbohydrates or proteins, resulting in depleted δ 13C 
values (Brugnoli and Farquhar 2004; Post et al., 2007; 
Samec et al., 2010). Therefore, the C4 detection values 
should be brought down approximately -6‰ or -8‰ for 
lipids (de Niro and Epstein 1977). 

Stable carbon isotope analysis on lipid extracts from the 
ceramic matrix, rather than charred foodstuff adhered to 
the inner surface of a vessel, has important benefits. 
Ceramic matrixes are considered ‘clean slates’ after 
firing, given that any lipids contained in clay are 

Figure 17. Description of the reference and archaeological samples studied in this paper. Calibrated dates were taken 

from Ratto (2013). 
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completely combusted during pottery firing (Eerkens 
2005). Therefore, any lipids recovered from the ceramic 
matrixes are absorbed residues of the foodstuffs cooked 
and/or stored in the vessels. Also, given the hydrophobic 
characteristics of lipids and the protective effect of the 
ceramic porous matrix, lipid residues are relatively well 
preserved. Potsherds that do not have apparent residues 
adhered to their inner surface can be good candidates for 
analysis if they have absorbed residues invisible to the 
naked eye (Evershed 2008). Hence, bulk isotopic analysis 
determines the presence of C4 carbon compounds even in 
samples that have undergone post-depositional processes, 
as it measures the δ 13C value in the mixture of the intact 
lipids and their degradation products (Seinfeld et al., 
2009).  

Maize Use in the West Tinogasta Region 

The West Tinogasta Region is set in the south-western tip 
of Catamarca province in northwestern Argentina, and is 
part of the South Central Andes (Figure 16). West 
Tinogasta is a vast area comprising two longitudinal 
valleys named Fiambalá and Chaschuil, separated by the 
Narváez and Las Planchadas ranges. Both valleys have 
diverse and contrasting eco-zones which include the 
mesothermal valley (1400-2400masl), the foothills (2400-
3500masl), the transitional puna (3500-4000masl) and the 
Andes mountain range (4000-6700masl). The 
geographical limits of this extended area are the humid 
valleys to the east, the southern puna highlands to the 
north, and Chile to the west.  

The cultural landscape of pre-Hispanic West Tinogasta 
was characterized by discontinuous settlement of human 
populations in response to the Mid-Holocene 
environmental variations associated with large-scale 
changes in climate, explosive volcanism, and recurrent 
seismic activity that shaped the topography and 
determined the habitability of the area (Ratto et al., 2013). 
Throughout the 1st millennium AD, communities 
populated the region and developed herding and 
agricultural economies while still maintaining hunting 
and gathering practices. Settlements were distributed 
sparsely at different altitudinal levels and eco-zones 
taking advantage of the different local resources (Ratto 
2013). Recent research shows that between the 10th and 
13th centuries AD the unstable environmental conditions 
combined with catastrophic volcanic events triggered 
population movements and site abandonments in search 
of eco-refuges in higher valleys where they continued to 
carry out their traditional ways of life (Ratto et al., 2013). 
The area was most probably repopulated when conditions 
improved in the mid-13th century AD (Ratto 2013). This 
also occurred during the Inka expansion between the 14th 
and 16th centuries AD, which promoted the movement of 
people with new cultural characteristics from other areas 
as part of a territorial domination strategy. During the 17th 
century AD, the Spanish colonial administration created 
new politically unstable conditions and caused further 
community relocation and new de-population (Ratto and 
Boxaidós 2012).  

The archaeological evidence of maize cultivation and 
consumption in West Tinogasta illustrates the importance 
of this staple grain in local foodways. For example, 
archaeobotanical remains of maize cobs and kernels were 
found in Fiambalá mesothermal valley in Punta Colorada 
(c. 650-1050 AD), Batungasta (1450-1550 AD), and the 
nearby site of Lorohuasi (c. 1400-1600 AD). 
Morphological analysis carried out by Dr. Cámara 
Hernández identified the local landraces Pisingallo-Capia, 
Morocho-Chaucha, Rosita-Colorado, and Capia-
Pisingallo. Ancient DNA analysis on nine specimens 
determined strong relationships with three complexes: 
Andean, South American, and those derived from the 
introduction of modern varieties (Lia et al., 2007). 
Continuity between archaeological and modern landraces 
is proposed for varieties such as Amarillo Chico, Amarillo 
Grande, Blanco, and Altiplano, all within the Andean 
complex (Cámara Hernández and Arancibia de Cabezas 
2007). 

In addition, local maize cultivation can be inferred from 
the extensive agricultural installations at different altitude 
levels in the mesothermal valley. These locations were 
intended for food production throughout the first 
millennium AD. During the mid-thirteenth to sixteenth 
centuries, the cultivated land for food production was 
expanded by the Inka administration in order to increase 
food production (Orgaz and Ratto 2013). The agricultural 
expansion took place in a context of interaction between 
local socio-political entities and foreign populations that 
were moved and established in the area by the Inka empire 
(Ratto and Boxaidós 2012; Orgaz and Ratto 2013). This 
particular situation was materialized with the presence of 
certain symbolic items such as tombs, rock art 
manifestations, and offerings to the sacred mountains that 
were displayed in the productive landscape, together with 
numerous lithic milling artefacts which were prevalent in 
these sites. 

Isotopic studies on bioarchaeological remains of 
individuals from the Fiambalá Valley suggest differences 
in diet through time (Aranda et al., 2014). One case of a 
lactating individual from the first millennium AD 
indicated that the mother’s diet was based on C4 plants, 
most probably maize. 

On the other hand, the samples from the Inka period had 
a wide range of values, but the general tendency suggested 
that during Inka state presence in the region (14th to 16th 
century AD), there was a mixed diet with an important C4 
component, a minor contribution of C3 plants, and limited 
access to animal protein. 

Materials and Methods 

Samples 

Carbon stable isotope analysis was carried out on the bulk 
lipid extracts from absorbed residues of eleven 
archaeological potsherds. Nine modern reference samples 
of traditional ingredients in Andean cookery were also 
extracted for lipids.  
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The archaeological ceramic samples were recovered from 
sites that illustrate the different chronological moments of 
the cultural development from 450 to 1550 AD. They 
were recovered from different altitude levels of the 
mesothermal valley and the transitional puna. 

Sites settled during the 5th to 11th centuries AD include 
Palo Blanco NH3, La Troya V50 and Punta Colorada, and 
sites settled during the 14th to 16th centuries AD during 
the Inka domination of the region include Mishma 7, 
Batungasta and San Francisco. None of the archaeological 
potsherds selected for analysis had visible adhered or 
charred residues in their inner surface, but they had a dark 
and oily appearance typical of absorbed organic residues. 
The samples were taken from the section of the vessel 
with most signs of absorbed residue and they were about 
4x4 centimetres in size and weighed between 20 and 30 
grams. In Figure 17 the geographical, chronological and 
morphological details are given for each sample. 
Photographs of some ceramic samples are shown in 
Figure 18. 

The nine modern reference samples included C3 and C4 
plants, and animals fed mostly on C3 or C4 plants (Figure 
2). Four landraces of maize were chosen to obtain C4 plant 
values. Bovine fat was selected from NW Argentina and 
the Central Argentine Pampas as references of animals fed 
on mostly C4 or C3 plants, respectively. Also, a sample of 
llama jerky was included from the puna area of Jujuy 
province in NW Argentina. Green pepper and kidney 
beans were selected for C3 plant references.  

Sample Preparation 

Lipid extraction was carried out on the archaeological 
potsherd samples and the reference samples. Preparation 
of dry reference samples was included grinding them in a 
coffee mill, which was carefully cleaned with solvent 
before each use. Preparation of humid or fresh reference 
samples was done by grinding them in a porcelain mortar 

with a pestle. Archaeological potsherds were cleaned by 
rinsing both surfaces with solvent. They were then broken 
into small fragments with a hammer and ground to dust in 
a clean porcelain mortar with a pestle.  

Organic extraction was carried out with a 2:1 mixture of 
chloroform and methanol, solvents were pre-distilled and 
of chromatographic quality. The samples were 
ultrasonificated twice for 5 minutes, and then filtered with 
16 ml of distilled water. Samples were then centrifuged 
for 3 minutes and the organic phase was separated, this 
was done twice to ensure no water remained. The 
extracted solvents were evaporated under nitrogen current 
and stored in 2 ml glass vials at -20°C.  

Elemental Analysis Coupled to Isotope 

Ratio Mass Spectrometry (EA-IRMS) 

Samples were weighted, loaded in tin capsules and 
combusted in an elemental analyser (EA) Carlo Erba 
coupled via a CONFLO IV interface to a Thermo Delta-
V Advantage isotope ratio mass spectrometer (IRMS). 
Helium was used as the carrier gas. A standard of pure 
CO2 was measured prior to each sample. Three internal 

Figure 18. Examples of archaeological potsherds 

selected for analysis. (a) Belén urn neck-body 

fragment; (b) aryballos vessel body fragment; (c) and 

(d) cooking pot base-body fragments. 

Figure 19. Isotopic values and percent C4 estimates of 

bulk total lipid extracts. 
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calibrated reference standards covering the entire 13C 
range of the samples were also measured. Final results 
were expressed as C, defined as: 

C = [(13C/12C)sample / (13C/12C)V-PDB -1] x 1000 

where C is the isotopic deviation in ‰ and V-PDB is 
the international standard, (Coplen et al., 2006; 
Gonfiantini 1978). The standard uncertainty is ±0.2‰.
  

The C4 fraction in each sample was estimated with the 
following equation by Morton and Schwartz (2004):  

PC4 = [(δsample – δC3 ref) / (δC4 ref – δC3 ref)] x 100 

where PC4 is the C4 fraction in the sample, δsample is the 
δ13C value of the sample, δC3 ref is the most depleted 
modern reference value for C3 plants and δC4 ref is the most 
enriched reference value for C4 plants (Seinfeld et al., 
2009). Given that the modern references and 
archaeological samples were all lipid extracts and 
therefore fractionation was equivalent in all cases, we 
considered the error reported by Hart et al. (2009) to be 
minimal. We also considered that modern samples are 
depleted on average -1.5‰ compared to archaeological 
samples from the pre-industrial period (Sonnerup et al., 
1999). 

Preliminary Results and Discussion 

Results of EA-IRMS analysis and C4 fraction estimations 
are presented in Figure 19. As expected, reference lipid 
samples of C4 modern maize landraces had the most 
enriched δ13C values varying from -15.9‰ to -14.8‰. 
These values are depleted in relation to standards for 
whole kernels that range from -11‰ to -9‰ (Killian 
Galván et al., 2014). On the other hand, reference lipid 
samples of C3 plants were in the range -34.9‰ to -32‰ 
which also is more depleted than the whole edible parts of 
these same species. In an intermediate position were the 

δ13C values for bovine fat. The δ13C value of sample from 
a bovine fed mostly on C3 pastures was -20.8‰, while that 
of the fat from a bovine fed mostly on C4 pastures was 
slightly more enriched at -19.8‰. The δ13C value for 
llama jerky was -28.6‰ which leads us to infer that it was 
fed on C3 pastures and its diet was not complemented with 
corn products or C4 pastures. It is worth mentioning that 
the isotopic signals diminish with higher trophic levels, so 
that less differentiated values are expected from 
herbivores than plants (Gannes et al., 1997). 

The δ13C values and C4 fractions of extracted lipid 
residues from archaeological samples showed variations. 
The results from Palo Blanco NH3 (AD 458-639) had 
values which fell in the range of C3 food products. The 
other two samples from La Troya V50 (AD 641-719) and 
Punta Colorada (AD 661-1020) pointed towards a mixed 
preparation of C3 and C4 food products. The samples from 
Mishma 7 (AD 1414-1573), Batungasta (AD 1445-1558) 
and San Francisco (AD 1400-1500) also pointed towards 
a mixed consumption, except for one case from 
Batungasta which had more enriched levels pointing 
towards a greater C4 use. 

Statistical analyses were carried out to observe trends 
between δ13C values, chronology, and vessel type. All 
numerical analyses are exploratory, given the limited 
sample size (N=11). 

Statistically, no significant trend was observed between 
δ13C values and site chronology, which was determined 
by Pearson’s x2 test (bilateral asymptotic significance: 
0.279; obtained value: 6.294) using the SPSS 19 software 
(IBM, 2010). Nevertheless, the distinctly negative values 
of Palo Blanco NH3 contrast with one markedly enriched 
value from Batungasta, while the remaining samples are 
in an intermediate position (Figure 20). This information 
is insufficient to propose an increase of maize dependence 
through time, especially considering the restricted sample 
size, but it does pose the question of a greater access to 

Figure 20. Distributions of δ13C values and C4 fraction of bulk lipid extracts from archaeological ceramic samples. The 

results are presented in relation to site chronology. 
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maize in Batungasta compared to other locations. Also, 
the lower isotopic values in Palo Blanco could respond to 
a greater access to animal products rather than a maize-
based diet complemented with some C3 plants (e.g. beans, 
peppers, squash, quinoa, algarroba, etc.) and limited 
animal products as seen in most sites from the first 
millennium AD, in contrast to site from the Inka period 
(thirteenth to mid-fourteenth centuries AD). 

In terms of morphological and functional properties of the 
samples, we observed no trends when comparing vessel 
morphological type and isotopic patterns. 

Everyday cooking pots and ritual vessels such as 
aryballos, aryballoid, and Belén vessels did not separate 
into two distinct groups. This was contrary to our 
expectations, because we had predicted a higher C4 signal 
in ritual vessels used for maize beer (chicha) production 
and consumption found in sites dedicated to ritual 
functions such as San Francisco (Orgaz et al., 2007; Orgaz 
2012). This could not be inferred from the results obtained 
in this study, possibly due to the small sample of ritual 
ceramic wares analysed. An alternative hypothesis that 
remains for future studies is the use of the ritual vessels 
for the production and consumption of maize chicha and 
algarrobo aloja alcoholic drink, resulting in mixtures of C4 
and C3 signals which are coherent with the values 
obtained in samples of ritual vessels. Also, animal fat may 
have been added post-firing to the inner walls of vessels 
in order to make them impermeable. This would have 
contributed to the mixed isotopic signals observed in our 
aryballos, aryballoid, and Belén vessels samples.  

Conclusion 

In this paper we studied the use and consumption practices 
of C3 and C4 food products in bulk lipid extracts from 
ceramic samples in West Tinogasta region. This 
preliminary analysis showed a great variability of use and 
consumption practices which could be explained by the 
multiple recipes and functions a pot had during its use life 
resulting in organic residue ‘palimpsests’. No statistically 
significant correlation existed between site chronologies 
and isotopic signals, but a differential access to maize in 
the Batungasta Inka site was recognized. Another idea 
prompted from this study is that consumption and storage 
of both aloja and chicha alcoholic beverages occurred in 
the same festive wares, which could explain the mixed 
isotopic signals in this special kind of vessels. In sum, the 
present study demonstrated the usefulness of carbon 
stable isotope analysis on bulk lipid residues and triggered 
hypothesis for future studies on the foodways of pre-
Hispanic West Tinogasta societies.  
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